US009305032B2

a2 United States Patent 10) Patent No.: US 9,305,032 B2
Waye et al. (45) Date of Patent: *Apr. 5, 2016
(54) FRAMEWORK FOR GENERATING 8,311,973 Bl * 112012 Zadeh GO6N 7/02
PROGRAMS TO PROCESS BEACONS 706/62
8,352,388 B2* 1/2013 Estes ...ooooorvorirocne GO6N 5/022
. . 706/12
(71) Applicant: Hulu, LL.C, Santa Monica, CA (US) 0,092,802 B1* 7/2015 Akella
. 2005/0234973 Al* 10/2005 Zengetal. 707/103 R
(72) Inventors: Lucas Waye, Cambridge, MA (US); 2006/0112110 Al 5/2006 Maymir-Ducharme et al.
Kevin Seng, Los Ange]es, CA (US), 2007/0011134 Al* 12007 Langsethetal. 707/1
Viral Bajaria, Santa Monica, CA (US): 2007/0011183 AL* 1/2007 Langseth etal. 707/101
Sh Mori fl Los Ancel ,CA g ’ 2007/0038927 Al* 2/2007 Dallettetal. 715/513
ane Moriah, Los Angeles, CA (US) 2008/0071796 Al* 3/2008 Ghuneimetal. 707/10
. . 2008/0320023 Al* 12/2008 Fong ..o GOGF 17/2264
(73) Assignee: HULU, LL.C, Santa Monica, CA (US) 2009/0177637 AL* 7/2009 Hollebeek GOGF 17/30917
2010/0100439 Al* 4/2010 Jutlaetal. 705/14.52
(*) Notice: Subject to any disclaimer, the term of this 2012/0078974 A1 3/2012 Meijer
patent is extended or adjusted under 35 2012/0174018 Al* 7/2012 Ash ..ccoccovvvnveene GO6F 19/322
715/772
U.S.C. 154(b) by 72 days. 2012/0310785 Al 12/2012 Poulin
This patent is subject to a terminal dis- 2013/0246319 Al* 92013 Tamayo GOG6N 99/005
claimer. 706/12
OTHER PUBLICATIONS
(21) Appl. No.: 14/228,003
U.S . Appl. No. 13/660,788, filed Oct. 25, 2012 in the name of Lucas
(22) Filed: Mar. 27,2014 Waye et al.
(65) Prior Publication Data * cited by examiner
US 2014/0214867 Al Jul. 31, 2014 Primary Examiner — Hung Le
Related U.S. Application Data (74) Attorney, Agent, or Firm — Fountain Law Group PC
(63) Continuation of application No. 13/660,788, filed on (57) ABSTRACT
Oct. 25, 2012, now Pat. No. 8,725,750. . . .
In one embodiment, a method receives an object model deter-
(51) Int.CL mined from a specification for processing beacons. The
GO6F 17/30 (2006.01) method determines first information for a beacon object ref-
(52) US.CL erenced in a basefact object to determine which beacon
CPC ... GO6F 17/30289 (2013.01); GOG6F 17/30563 objects are applicable for the basefact object. Second infor-
(2013.01); GOGF 17/30896 (2013.01) mation is determined for the structured data fields referenced
58) Field of Classification Search 1n the basefact object to determine which output fields map to
(58) in the basefact obj d i hich output fields map
None which structured data fields and third information is deter-
See application file for complete search history. mined for a set of transformations for a set of input fields in
the set of composite objects for the beacon to determine how
eferences Cite to perform transtormations to transtorm the set of input fields
56 Refi Cited perf fi i fi h finput field

8,255,347 B2 *

U.S. PATENT DOCUMENTS

7,849,003 B2* 12/2010 Egnatios

to the set of output fields. The method then generates instruc-
tions for a target program to process the beacons to transform
the set of input fields to the set of output fields and map the set

............. G06Q 20/10
Q70 5/38 of output fields to the structured data fields.
8/2012 Ellingsworth GO6F 17/30616
706/20 21 Claims, 6 Drawing Sheets
108\
[Tree Abst;act Objdeclt
ifi i syntax mode
Speclleé;;tlons generator [—— tyrees generator
206
Generator | Targst
d programs #!
Object Generator Targst
mnzdials 208-2 programs #2
G t arge
ez;.g;uor ->DrJEr5v|st N

US 9,305,032 B2

Sheet 1 of 6

Apr. 5, 2016

U.S. Patent

we.a§oJad 1e8.e]

SU0131E91}103dg

| OId
eiep
pa.JnionJais
suooeag
_ 90T -
wog_ ————»| sueJ3oid v0l
49| 1dwon UO11840U9E 1088 JEY WETS

(e1ep
paJnionJisun)
suooeag

¢0T

€— $193)
sjual|)

I

drlluoo_

US 9,305,032 B2

Sheet 2 of 6

Apr. 5, 2016

U.S. Patent

90¢
S | apouw

109MqQ

N# sweJagoud ZImON
108081 ¥ Jotes0u8y

74 sweuSo.d —aR7

Josue, ¢-80¢
101eJ8UdY

L# sweJgoud %
10802 J01e49U83Y

G0¢
1031 J8Ua3

| opouw
199lqp

¢ 9Id

¥0¢
$99.1

XB1UAS

1084180y

€0¢
SIS CIENEE:

99|

-t

20¢
suol1e9ol J19adg

01

U.S. Patent Apr. 5, 2016 Sheet 3 of 6 US 9,305,032 B2

300
T

302 Receive a specification

l

Parse a specification into an abstract syntax

304 tree

l

Convert the abstract syntax tree into an
306/\ object model

'

308 /N Determine a generator for a target program

310 Generate the target program for the generator
VA based on object model

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 6 US 9,305,032 B2

202
™~

composite Video {
input int video_id:"406
output string video_name;""403
404
mapper for mapreducejob {

402 conversionMethod = "convertVideoldToVideoName"

} : 410

composite Browser { ... } }412
composite Count { ... }

beacon playback_start {
Video selected video;
412 Browser user_browser; }414
Count count;

}

basefact starts by video _and_browser from playback_start {
dimension selected video.video_name as videoName;
416 dimension user_browser.name as browserName; 418
fact sum(count.count) as totalCount;

FIG. 4

U.S. Patent Apr. 5, 2016 Sheet 5 of 6 US 9,305,032 B2

202
N

506\/’

/

composite Video {
/m’ﬂt int video_id;

7~

L output string video_name;
mapper for mapreducejob {
conversionMethod = "convertVideoldToVideoName"

k

composite Browser{ B }
composite Couﬁt {..
506) - 506, ————

bea;ron playl;tack staﬁ{

™ Vlde0|selected video;

\ BrowSer user browser‘} 414

~ Count count; ‘ \

} A ‘ 504

504 — 90— |/ \

basefact starts by video! and_:browser from playback start {
dlmensﬂn selected _video.video_name as videoName;

dimensioh user_ browser.name as browserName; — ™
fact sum(count.count) as totalCount; T 908

FIG. 5

U.S. Patent Apr. 5, 2016 Sheet 6 of 6 US 9,305,032 B2

106
~

public class Starts {
public static Map<KeyStarts, ValueStarts> reduceFn(KeyStarts key, ¢ ¢qo
lterator<ValueStarts> values, Reporter reporter) {
ValueStarts outValue = new ValueStarts();
outValue.totalCount = OL; __604
while (values.hasNext()) {
ValueStarts inValue = values.next();
outValue.totalCount += inValue.totalCount;
H 606-
Map<KeyStarts, ValueStarts> output = new HashMap<KeyStarts, ValueStarts>();
output.put(key, outValue);
return output;

608
. . " % k_’) *W .
addFilter(new EventFilter(".*playback_start.*));

addSafeKeyAction(new VideoldToVideoName<String>(), new
BeaconinputAction("video_id"), new OutputAction("videoName")) 610

addSafeKeyAction(new BrowserName<String>(), new -
BeaconInputAction("browser"), new OutputAction("browserName"); . 612

addSafeValueAction(new Ident|ty<Long>() new Stat|clnputAct|on<Long>(1 L),

new OutputAction("totalCount")));
e I I

FIG. 6

US 9,305,032 B2

1
FRAMEWORK FOR GENERATING
PROGRAMS TO PROCESS BEACONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/660,788 filed Oct. 25, 2012 and entitled
“Framework for Generating Programs to Process Beacons”,
which is incorporated by reference in its entirety for all pur-
poses.

BACKGROUND

Companies provide services that users access using client
devices. For example, a user may view a video in a media
player. The companies often seek to improve their service by
analyzing events that occur while the users are using their
client devices. For example, while viewing the video, the user
performs different actions, such as seeking to different times
in the video, stopping the video, hovering over icons, etc. Web
requests are generated to document the actions taken at the
client devices (also referred to as “beacons”). For example,
when a user’s browser requests information from a website, a
server may aggregate information, such as the IP address of
the computer being used; the time the material was viewed;
the type of browser that was used, the type of action taken by
the user, etc. The beacons are logged and aggregated for the
company.

The beacons include information that is in an unstructured
format. The unstructured format is not in a pre-defined data
model that a company can easily store in a structured data-
base. For example, many analysis applications are keyed to
retrieve data in fields in a structured database. The beacons do
not include data that can easily be stored in the correct fields.
Thus, if a company is going to analyze the information in the
beacons, the company needs to transform the unstructured
data into structured data. The structured data organizes the
data in a format desired by the company where the company
can then analyze the structured data.

Programs need to be written to perform the transformation
of the unstructured data of the beacons into structured data.
However, each type of beacon has different types of informa-
tion. Thus, for each type of beacon that the company wants to
analyze, a programmer needs to write a program to transform
the unstructured data for the beacon to the desired type of
structured data. Writing the programs to perform these trans-
formations may be a tedious process. Also, having to write
code for the programs limits the number of users that can
write the programs because most users are not programmers.

SUMMARY

In one embodiment, a method receives an object model
including objects determined from a specification for pro-
cessing beacons where a beacon is associated with an event
occurring at a client while a user is interacting with an appli-
cation and includes unstructured data. The method deter-
mines first information for a beacon object referenced in a
basefact object to determine which beacon objects are appli-
cable for the basefact object. The beacon object includes a set
of field objects that identify a set of composite objects for the
beacon object, and the basefact object includes a set of struc-
tured data objects that identify the set of output fields in a
composite object to map to a set of structured data fields.
Second information is determined for the set of structured
data fields referenced in the basefact object to determine

30

40

45

50

55

2

which output fields map to which structured data fields and
third information is determined for a set of transformations
for a set of input fields in the set of composite objects for the
beacon to determine how to perform transformations to trans-
form the set of input fields to the set of output fields. The
method then generates instructions for a target program to
process the beacons using the first information, the second
information, and the third information to transform the set of
input fields to the set of output fields and map the set of output
fields to the set of structured data fields.

In one embodiment, an apparatus includes: one or more
computer processors; and a computer-readable storage
medium comprising instructions, that when executed, control
the one or more computer processors to be configured for:
receiving an object model including objects determined from
a specification for processing beacons, a beacon being asso-
ciated with an event occurring at a client while a user is
interacting with an application and including unstructured
data; determining first information for a beacon object refer-
enced in a basefact object to determine which beacon objects
are applicable for the basefact object, wherein the beacon
object includes a set of field objects that identify a set of
composite objects for the beacon object, and the basefact
objectincludes a set of structured data objects that identify the
set of output fields in a composite object to map to a set of
structured data fields; determining second information for the
set of structured data fields referenced in the basefact object to
determine which output fields map to which structured data
fields; determining third information for a set of transforma-
tions for a set of input fields in the set of composite objects for
the beacon to determine how to perform transformations to
transform the set of input fields to the set of output fields; and
generating instructions for a target program to process the
beacons using the first information, the second information,
and the third information to transform the set of input fields to
the set of output fields and map the set of output fields to the
set of structured data fields.

In one embodiment, a non-transitory computer-readable
storage medium contains instructions, that when executed,
control a computer system to be configured for: receiving an
object model including objects determined from a specifica-
tion for processing beacons, a beacon being associated with
an event occurring at a client while a user is interacting with
an application and including unstructured data; determining
first information for a beacon object referenced in a basefact
object to determine which beacon objects are applicable for
the basefact object, wherein the beacon object includes a set
of field objects that identify a set of composite objects for the
beacon object, and the basefact object includes a set of struc-
tured data objects that identify the set of output fields in a
composite object to map to a set of structured data fields;
determining second information for the set of structured data
fields referenced in the basefact object to determine which
output fields map to which structured data fields; determining
third information for a set of transformations for a set of input
fields in the set of composite objects for the beacon to deter-
mine how to perform transformations to transform the set of
input fields to the set of output fields; and generating instruc-
tions for a target program to process the beacons using the
first information, the second information, and the third infor-
mation to transform the set of input fields to the set of output
fields and map the set of output fields to the set of structured
data fields.

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages of particular embodiments.

US 9,305,032 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a simplified system for processing beacons
according to one embodiment.

FIG. 2 shows an example of a compiler according to one
embodiment.

FIG. 3 depicts a simplified flowchart for generating target
programs according to one embodiment.

FIG. 4 shows a specification according to one embodiment.

FIG. 5 shows the relationship of objects within the com-
posite, beacon, and basefact objects.

FIG. 6 shows an example of a target program according to
one embodiment.

DETAILED DESCRIPTION

Described herein are techniques for a framework for pro-
cessing beacons. In the following description, for purposes of
explanation, numerous examples and specific details are set
forth in order to provide a thorough understanding of particu-
lar embodiments. Particular embodiments as defined by the
claims may include some or all of the features in these
examples alone or in combination with other features
described below, and may further include modifications and
equivalents of the features and concepts described herein.

FIG. 1 depicts a simplified system 100 for processing bea-
cons according to one embodiment. System 100 includes
clients 102, a server 104, beacon target programs 106, and a
beacon target program generation compiler 108. The beacons
may include unicode strings and URL encoded binary strings.
To obtain any further semantic meaning of the beacon data,
the beacon data needs to be interpreted and transformed by
target programs. Although beacons are described, which may
be web event logs for events that occur while users use clients
102, other types of unstructured data may be appreciated. For
example, beacons may also include extensible mark-up lan-
guage (XML) specifications, hypertext transter mark-up lan-
guage (HTML) code, and other human-readable documenta-
tion.

Users interact with clients 102 to produce events. For
example, users may interact with websites on the worldwide
web (WWW), such as through mouse clicks, hovering over
objects, and other user interactions with web pages. Beacons
are created based on the events and include information for
the actions taken by the users and may also include other
metadata about the event. For example, the metadata may
include user identification information, what platform (e.g.,
device type or operating system) is being used, what applica-
tion is being used, etc. The beacons may be unstructured data.
Also, different clients 102 and different web sites may gen-
erate beacons in different formats.

A server 104 receives and stores the beacons for later
processing. In one example, server 104 may aggregate bea-
cons from multiple network devices. Also, server 104 may be
a distributed system of servers that are storing the beacons. In
this example, server 104 stores the beacons, but other storage
devices may store the beacons.

In one example, target programs 106 may be executed to
process the beacons. When executed, target programs 106
may determine beacons that are of interest and then transform
the unstructured data of the beacons into structured data that
can be used by a company. For example, different target
programs 106 may be interested in different types of beacons.
Each target program 106 would identify the applicable bea-
cons. Then, target programs 106 transform the unstructured
data into structured data. The structured data may be stored in
a database for later querying, such as to generate reports.

15

25

40

45

50

55

4

Conventionally, users would have to write target programs
106 for each type of beacon that a company wanted to pro-
cess. However, particular embodiments automatically gener-
ate target programs 106. For example, as will be described in
more detail below, compiler 108 receives a specification and
uses the specification to automatically generate a target pro-
gram 106. Using the specification allows users to declara-
tively specify what beacons are of interest and what struc-
tured data is desired. Compiler 108 then generates target
programs 106 that can process the beacons and perform the
desired transformations from unstructured data to structured
data. By using the specification to declare what is wanted,
users do not have to write a program that is used to process the
beacons. This may allow more users to specify how to process
beacons.

The process of generating a target program 106 from a
specification will now be described in more detail. FIG. 2
shows a more detailed example of compiler 108 according to
one embodiment. Specifications 202 may be written using a
specific grammar that declares what beacons are of interest
and what structured data is desired. Users may write different
specifications 202 to generate different structured data from
different beacons.

In one embodiment, an abstract syntax tree generator 203
first converts specifications 202 into abstract syntax trees 204.
The abstract syntax tree is an abstract way of representing the
syntax of different specifications 202. In one embodiment, an
abstract syntax tree is a tree representation of the syntactic
structure of the input program. The syntax tree is built through
the use of a parser, which produces a tree representation of the
input program based on a grammar specification.

An object model generator 205 uses the abstract syntax
trees to generate object models 206. Object models 206 con-
vert nodes of the abstract syntax tree into objects that are in
the object model. The object model is used such that genera-
tors 208 can be written to read a specific format defined in the
object model. This allows generators 208 to be reused to
process different specifications 202. Because beacons may
have similar formats of data, specifications 202 may be writ-
ten and parsed into object models 206. Thus, to process dif-
ferent types of beacons, object models 206 with different
objects may be generated, but the same generators 208 may be
used. Also, even though the information that is being trans-
formed from unstructured data to structured data may be
different, the same generator 208 may be used because each
generator 208 is configured to parse the same format of an
object model 206. In one embodiment, the object model is a
simplified and generalized view of the input specification
based on the abstract syntax tree. The object model is gener-
ated by passing over the abstract syntax tree multiple times.
Specification correctness checks may be performed (seman-
tic analysis), symbols may be resolved (e.g., various refer-
ences that must be resolved and disambiguated), and a sim-
plified structure is created (called the object model) so that
generators 208 can be written more concisely.

Object models 206 are in a format that can be read by
different generators 208-1-208-N. Each generator 208-1-
208-N may generate target programs #1-N, respectively. For
example, some generators 208 may generate MapReduce
source code, structured query language (SQL) queries, rep-
resentational state transfer (REST) requests, HTML docu-
mentation, and other target programs. Each generator 208
may be written to process the formats of object models 206
and thus multiple generators 208 do not need to be written for
different specifications 202. That is, if MapReduce code is
desired, the same MapReduce generator 208 is used for mul-

US 9,305,032 B2

5

tiple specifications 202. The objects in object model 206 may
change, but the same generator 208 may be used.

FIG. 3 depicts a simplified flowchart for generating target
programs 106 according to one embodiment. At 302, com-
piler 108 receives a specification 202. Specification 202
specifies which beacons to process and what transformations
of the unstructured data to specified structured data are
desired. In one embodiment, specification 202 does not
include code that is used to process beacons and transform the
unstructured data to structured data. Also, compiler 108 may
parse the specification for correctness. For example, compiler
108 parse the specification for semantic correctness, such as
compiler 108 may determine that a basefact is referencing a
beacon that is not defined.

At 304, compiler 108 parses specification 202 into an
abstract syntax tree 204. The abstract syntax tree organizes
the elements of specification 202 into a tree structure.

At 306, compiler 108 converts abstract syntax tree 204 into
an object model 206. For example compiler 108 parses nodes
of abstract syntax tree 204 to generate object model 206.
Object model 206 organizes specification 202 into objects.

At 308, compiler 108 determines a generator 208 for a
target program 106. For example, compiler 108 may receive
auser selection of a generator 208. The selected generator 208
is configured to produce a specific type of target program 106.

At 310, compiler 108 generates target program 106 for
generator 208 based on object model 206. To illustrate the
above process of generating target program 106 from speci-
fication 202, an example specification 202 will be described.
FIG. 4 shows a specification 202 according to one embodi-
ment. Specification 202 produces a target program 106 to
convert a video ID to a video name, transform a browser name
for the browser used to play a video to a browser name, and
count the number of times the video was played. It should be
noted that specification 202 may not be a complete specifica-
tion and has parts redacted, such as when a “. . . ” is shown.

Specification 202 includes three sections of “composite”,
“beacon”, and “basefact”. A composite defines what is in the
beacon, such as the raw data that is in the beacon, and how to
transform the raw data in the beacon. At 402, three composite
objects of “Video”, “Browser”, and “Count” are shown. Com-
posites may have any number of input fields and one or more
output fields. At 404, the Video composite object has an input
parameter object named “video_id”. This is what the beacon
parameter name is in a raw log line. For example, the unstruc-
tured data may include the term “video_id”. At408, the Video
composite object includes an output field object called “vide-
o_name”. This is the field name after video_id is transformed.
At 410, a mapper object for “MapReducelob” includes trans-
formational logic for the output field object video_name. The
mapper object includes details for performing the transfor-
mation that is specified in the mapper definition located at
conversionMethod. Additional mappers may also be included
in a composite object that may perform other transformations.
At 412, other composite objects of “Browser” and “Count”
are included. Details have not been provided, but would be
similar to those found in the Video composite object. It will be
understood that specification 202 may include any number of
composite objects 402. For example, specification 202 may
include additional composite objects (not shown) that may be
used by other beacon objects.

At 412, a beacon object is identified as “playback_start”
and uniquely identifies the beacon within specification 202.
Because specification 202 may include multiple composite
objects, the beacon object identifies which composite objects
are part of this beacon object. At 414, the beacon includes
three field objects: “selected_video”, which references the

20

25

30

40

45

50

55

6

Video composite object; “user_browser”, which references
the Browser composite object; and “count”, which references
the Count composite object. The field objects are used to refer
back to composite objects.

At 416, specification 202 defines a basefact object of
“start_by_video_and_browser”. The basefact object is used
to define what structured data is desired and what unstruc-
tured data should be used to populate the structured data. The
basefact object may use multiple basefacts objects. For
example, this basefact object uses the “playback_start” bea-
con object to determine applicable data. That is, this basefact
ignores all other beacon objects that are not named “play-
back_start” in specification 202. At 418, the basefact object
includes three structured data field objects for the
“playback_start” beacon. The structured data fields may be
different types, such as dimension or fact fields. A dimension
maps a field in the beacon to a structured data field. A fact may
perform a function (e.g., an aggregation function) on a field in
the beacon to determine a result that is mapped to a structured
data field.

A first structured data field of “videoName” is defined as a
dimension of the video_name field object in the composite
object referenced by the selected_video field object in the
beacon object and a second structured data field of “browser-
Name” is defined as a dimension from the name field objectin
the composite object referenced by the user_browser field
object in the beacon object. A third structured data field of
“totalCount” is defined as a fact that is the aggregation of the
count field object in the composite object referenced by the
count field object in the beacon object.

Once receiving specification 202, compiler 108 selects a
generator 208 that is used to generate a target program 106. As
discussed above, compiler 108 converts specification 202 into
object model 206. Generator 208 takes object model 206 and
generates code in a software language that is used to process
beacons. In one embodiment, compiler 108 generates
MapReduce job code as a target program 106. Target program
106 is configured to receive unstructured data, such as raw
web event log lines, and generate structured data specified by
the starts_by_video_and_browser basefact definition. That
is, transformed data from the beacons is stored in structured
data fields of videoName, browserName, and totalCount.

FIG. 5 shows the relationship of objects within the com-
posite, beacon, and basefact objects that generator 208 ana-
lyzes to generate code for target program 106. At 502, gen-
erator 208 identifies the beacon object for the basefact object.
For example, specification 202 may include multiple beacon
objects and the beacon object for this basefact object is the
playback_start beacon object. Generator 208 generates filter-
ing code that determines which beacons should be processed
by target program 106.

The structured data field objects in the basefact object point
to field objects in the beacon object at 504. For example,
selected_video, user_browser, and count are referenced in
both the basefact and the beacon objects. To determine which
composite objects these structured data field objects are asso-
ciated with, at 506, the field objects in the beacon object are
associated with composite objects.

Generator 208 then uses the referenced composite objects
from the beacon object to generate instructions on how to map
unstructured data to structured data. For example, generator
208 generates instructions on how to tokenize (breaking the
text of the beacon into words or phrases) and transform raw
web log data to structured data. For example, at 508, the
basefact object defines the structured data by the terms vide-
oName, browserName, and totalCount, which are structured
data fields that can be defined in a database. The transforma-

US 9,305,032 B2

7

tions for the field objects in the basefact object are specified in
the composite object that each beacon field object references
as was discussed with respect to 506. Also, for the fact field
object, generator 208 generates instructions to aggregate
rows based on the count composite object.

Generator 208 then outputs the final software code that is
compiled into target program 106. Target program 106 can
then be used to process beacons and produce the transformed
data as specified in the basefact definition.

FIG. 6 shows an example of target program 106 according
to one embodiment. Generator 208 may generate target pro-
gram 106 based on specification 202 and object model 206. At
602, the function “Map” defines the aggregator/reducer based
on the MapReduce paradigm. Dimensions correspond to
Keys, and Facts correspond to Values. At 604, the field “total-
Count” corresponds to the structured data field defined in the
basefact object of specification 202. Also, at 606, the “+="
symbol is determined based on the “sum” function in speci-
fication 202 that is an aggregator.

At 608, the term “playback_start” is based on which bea-
cons were defined by specification 202. In this case, only
events defined by playback_start beacons are reviewed. At
610, the conversion found in the composite Video is found,
and at 612, the conversion found in the composite Browser is
found. Further, at 614, the functions “Identity<Long>()” and
“StaticInputAction<Long>(11)” are determined based on the
fact “sum” in the basefact in specification 202. The above
information is determined by reviewing object model 206 to
generate the target program 106.

Accordingly, compiler 108 generates target program 106,
which can map unstructured data to structured data. A user
can declare the structured data that was desired and the trans-
formations needed to transform unstructured data to struc-
tured data. Compiler 108 then generates the software code to
perform the desired transformations. A user thus does not
need to write software code for target program 106.

Further, particular embodiments leverage object model
206 that allows different generators 208 to operate on the
object model. Thus, different specifications 202 may be
parsed into an object model 206 that can be operated on by the
same generators 208.

Particular embodiments may be implemented in a non-
transitory computer-readable storage medium for use by or in
connection with the instruction execution system, apparatus,
system, or machine. The computer-readable storage medium
contains instructions for controlling a computer system to
perform a method described by particular embodiments. The
instructions, when executed by one or more computer pro-
cessors, may be operable to perform that which is described in
particular embodiments.

Asused in the description herein and throughout the claims
that follow, “a”, “an”, and “the” includes plural references
unless the context clearly dictates otherwise. Also, as used in
the description herein and throughout the claims that follow,
the meaning of “in” includes “in”” and “on” unless the context
clearly dictates otherwise.

The above description illustrates various embodiments
along with examples of how aspects of particular embodi-
ments may be implemented. The above examples and
embodiments should not be deemed to be the only embodi-
ments, and are presented to illustrate the flexibility and advan-
tages of particular embodiments as defined by the following
claims. Based on the above disclosure and the following
claims, other arrangements, embodiments, implementations
and equivalents may be employed without departing from the
scope hereof as defined by the claims.

10

15

20

25

30

35

40

45

50

55

60

65

What is claimed is:
1. A method comprising:
receiving, by a computer system, an object model includ-
ing objects determined from a specification for process-
ing beacons, a beacon being associated with an event
occurring at a client while a user is interacting with an
application and including unstructured data;

determining, by the computer system, first information for
a beacon object referenced in a basefact object to deter-
mine which beacon objects are applicable for the base-
fact object, wherein the beacon object includes a set of
field objects that identify a set of composite objects for
the beacon object, and the basefact object includes a set
of structured data objects that identify the set of output
fields in a composite object to map to a set of structured
data fields;

determining, by the computer system, second information

for the set of structured data fields referenced in the
basefact object to determine which output fields map to
which structured data fields;

determining, by the computer system, third information for

a set of transformations for a set of input fields in the set
of composite objects for the beacon to determine how to
perform transformations to transform the set of input
fields to the set of output fields; and

generating, by the computer system, instructions for a tar-

get program to process the beacons using the first infor-
mation, the second information, and the third informa-
tion to transform the set of input fields to the set of output
fields and map the set of output fields to the set of
structured data fields.

2. The method of claim 1, further comprising:

receiving the specification for processing beacons,

wherein different specifications are parsed into a format
of the object model.

3. The method of claim 2, further comprising:

parsing the specification to determine the first information,

the second information, and the third information.

4. The method of claim 1, further comprising:

determining a generator from a set of generators to gener-

ate the instructions, wherein each generator is config-
ured to process the format of the object model to gener-
ate a different type of target program to process the
beacons and multiple generators can process different
specifications that are parsed into the format of the
object model.

5. The method of claim 4, further comprising:

running, by the computer system, the generator with the

object model to generate the target program using the
first information, the second information, and the third
information.

6. The method of claim 1, wherein the first information, the
second information, and the third information identify the
beacons for the specification, determine unstructured data in
the beacons that were specified in the specification, and trans-
form the unstructured data into structured data as specified in
the specification.

7. The method of claim 1, wherein the first information, the
second information, and the third information comprise soft-
ware code.

8. The method of claim 1, wherein the object model is
determined from an abstract syntax tree.

9. A non-transitory computer-readable storage medium
containing instructions, that when executed, control a com-
puter system to be configured for:

receiving an object model including objects determined

from a specification for processing beacons, a beacon

US 9,305,032 B2

9

being associated with an event occurring at a client while
a user is interacting with an application and including
unstructured data;
determining first information for a beacon object refer-
enced in a basefact object to determine which beacon
objects are applicable for the basefact object, wherein
the beacon object includes a set of field objects that
identify a set of composite objects for the beacon object,
and the basefact object includes a set of structured data
objects that identify the set of output fields in a compos-
ite object to map to a set of structured data fields;

determining second information for the set of structured
data fields referenced in the basefact object to determine
which output fields map to which structured data fields;

determining third information for a set of transformations
for a set of input fields in the set of composite objects for
the beacon to determine how to perform transformations
to transform the set of input fields to the set of output
fields; and

generating instructions for a target program to process the

beacons using the first information, the second informa-
tion, and the third information to transform the set of
input fields to the set of output fields and map the set of
output fields to the set of structured data fields.

10. The non-transitory computer-readable storage medium
of claim 9, further configured for:

receiving the specification for processing beacons,

wherein different specifications are parsed into a format
of the object model.

11. The non-transitory computer-readable storage medium
of claim 10, further configured for:

parsing the specification to determine the first information,

the second information, and the third information.

12. The non-transitory computer-readable storage medium
of claim 9, further configured for:

determining a generator from a set of generators to gener-

ate the instructions, wherein each generator is config-
ured to process the format of the object model to gener-
ate a different type of target program to process the
beacons and multiple generators can process different
specifications that are parsed into the format of the
object model.

13. The non-transitory computer-readable storage medium
of claim 12, 4, further configured for:

running, by the computer system, the generator with the

object model to generate the target program using the
first information, the second information, and the third
information.

14. The non-transitory computer-readable storage medium
of claim 9, wherein the first information, the second informa-
tion, and the third information identify the beacons for the
specification, determine unstructured data in the beacons that
were specified in the specification, and transform the unstruc-
tured data into structured data as specified in the specification.

15. The non-transitory computer-readable storage medium
of claim 14, wherein the first information, the second infor-
mation, and the third information comprise software code.

10

15

20

25

30

35

40

45

50

55

10

16. The non-transitory computer-readable storage medium
of claim 9, wherein the object model is determined from an
abstract syntax tree.

17. An apparatus comprising:

one or more computer processors; and

a computer-readable storage medium comprising instruc-

tions, that when executed, control the one or more com-
puter processors to be configured for:
receiving an object model including objects determined
from a specification for processing beacons, a beacon
being associated with an event occurring at a client while
a user is interacting with an application and including
unstructured data;
determining first information for a beacon object refer-
enced in a basefact object to determine which beacon
objects are applicable for the basefact object, wherein
the beacon object includes a set of field objects that
identify a set of composite objects for the beacon object,
and the basefact object includes a set of structured data
objects that identify the set of output fields in a compos-
ite object to map to a set of structured data fields;

determining second information for the set of structured
data fields referenced in the basefact object to determine
which output fields map to which structured data fields;

determining third information for a set of transformations
for a set of input fields in the set of composite objects for
the beacon to determine how to perform transformations
to transform the set of input fields to the set of output
fields; and

generating instructions for a target program to process the

beacons using the first information, the second informa-
tion, and the third information to transform the set of
input fields to the set of output fields and map the set of
output fields to the set of structured data fields.

18. The apparatus of claim 17, further configured for:

receiving the specification for processing beacons,

wherein different specifications are parsed into a format
of the object model.

19. The apparatus of claim 18, further configured for:

parsing the specification to determine the first information,

the second information, and the third information.

20. The apparatus of claim 17, further configured for:

determining a generator from a set of generators to gener-

ate the instructions, wherein each generator is config-
ured to process the format of the object model to gener-
ate a different type of target program to process the
beacons and multiple generators can process different
specifications that are parsed into the format of the
object model.

21. The apparatus of claim 17, wherein the first informa-
tion, the second information, and the third information iden-
tify the beacons for the specification, determine unstructured
data in the beacons that were specified in the specification,
and transform the unstructured data into structured data as
specified in the specification.

#* #* #* #* #*

